Chemical Turing Machines
October 21, 2024
Finite state automata (FSA) can be modeled with reactions of the form
Generally, we will be associating languages of various grammars in the Chomsky hierarchy to certain combinations of "aliquots" added to a one-pot reaction, and in this case we want our aliquots to be potassium iodide and silver nitride. Take the language over the alphabet
Type-2 grammars consist of languages that can be modeled with pushdown automatas, which differ from FSAs in that they have a stack that can store strings of arbitrary sizes. We call these languages "context-free languages", and the reactions which we associate to context-free languages are those with intermediaries. Again, because of automata equivalence, we can consider the simple case of the Dyck language: the collection of parentheses-strings that never contain more closed parentheses than open parentheses at any
We associate this with the
Incidentally, you can interpret this as the enthalpy yield
How do we model Turing machines? You can think of a Turing machine as a "two-stack" PDA, where each stack corresponds to moving left or right on the tape. Physically, this implies that we want to model TMs with a reaction with at least two interdependent intermediaries, and we want it to be "expressive" enough to model "non-linearities". Oscillatory redox reactions are a natural choice, of which the Belousov-Zhabotinsky (BZ) reaction is the most famous.
A typical BZ reaction involves the combination of sodium bromate and malonic acid, with the main structure as follows:
BZ reactions have a ton of macro-structure. Color changes as a function of the amount of oxidized catalyst, the proportions of the reactants and products fluctuate periodically, and even spatial patterns emerge from micro-heterogeneity in concentrations (e.g. reaction-diffusion waves, Pack patterns). These properties are incredibly interesting in and of themselves, but all we need for modeling TMs is that the reaction is sensitive to the addition of small amounts of aliquot.
Consider the language
Oscillation frequency
What actually allows word-by-word identification though, is the sensitivity of the oscillatory patterns to the concentrations of specific intermediaries:
The various "out-of-order" signatures for words not in
can be explained as follows. Each symbol has an associated distinct pathway in the reaction network. Hence, if the aliquot added is for the same symbol as the previous one, the pathway is not changed but reinforced. In contrast, when the aliquot is different, the reaction is shifted from one dominant pathway to another pathway, thus reconfiguring the key intermediate concentrations and, in turn, leading to distinctive changes in the oscillatory patterns. The change from one pathway, say 1, to say pathway 2 impacts the oscillations differently than going from pathway 2 to pathway 1. This is what allows the machine to give unique distinctive behaviors for out-of-order substrings.1
Thermodynamically, characterizing word acceptance is a little bit more involved than that of PDAs or FSAs, but it can still be done. Define the area of a word as
References
Dueñas-Díez, M., & Pérez-Mercader, J. (2019). How Chemistry Computes: Language Recognition by Non-Biochemical Chemical Automata. From Finite Automata to Turing Machines. iScience, 19, 514-526. https://doi.org/10.1016/j.isci.2019.08.007
Magnasco, M. O. (1997). Chemical Kinetics is Turing Universal. Physical Review Letters, 78(6), 1190-1193. https://doi.org/10.1103/PhysRevLett.78.1190
Dueñas-Díez, M., & Pérez-Mercader, J. (2019). Native chemical automata and the thermodynamic interpretation of their experimental accept/reject responses. In The Energetics of Computing in Life and Machines, D.H. Wolpert, C. Kempes, J.A. Grochow, and P.F. Stadler, eds. (SFI Press), pp. 119–139.
Hjelmfelt, A., Weinberger, E. D., & Ross, J. (1991). Chemical implementation of neural networks and Turing machines. Proceedings of the National Academy of Sciences, 88(24), 10983-10987. https://doi.org/10.1073/pnas.88.24.10983